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dynamic patterns. Our method extends the reduced convex hull doacdp
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1 Introduction

Wireless capsule endoscopy (WCE) is a recently establisbelthblogy that requires
no wired device intrusion and can be used to examine theeestall intestine non-
invasively. The imaging component of this system is a vitagized capsule that is
composed of a color CMOS camera, a battery, a light sourceaamideless transmitter.
It provides a 140-degree field of view and generat@s x 256 images. Once the device
is activated, it is ready to take pictures. The camera aeguirvo pictures every second
for approximately eight hours, transmitting images to eordimg device worn by the
patient. By using a lens of short focal length, images arainobtl as the capsule is
propelled through the tract. Unlike conventional fiberiomndoscopy, WCE requires
little patient preparation and can potentially image angtisa in the digestive system.
The ability of WCE to detect undersized lesions in the sma#dtine is ideally suited
for this particular role. It enables physicians to examihe entire small intestine, a
region that was previously difficult to view at all, and prd®i a new non-invasive
gastrointestinal (Gl) visualization technology. The diagtic yield using WCE is much
higher compared to other endoscopic imaging methods. Gamndoscopy has the
potential for use in a wide variety of illnesses.

Recognizing where a WCE frame is taken in the digestive tsawital to diagnosis
and treatment deployment. An important question that ddigses at diagnosis is where
the lesion is found. Reviewing WCE videos and estimating tetamical locations of
WCE frames are, however, very difficult, even for experienceaders. The primary
reasons are inconsistent speed of WCE device and lack of gathylsihdmarks. The
current technology relies on wireless signal strength,ctvhis used to calculate the
distance of the device to the data receiver. This methodiggewery coarse anatomical
trace. A common practice by physicians is reading WCE francesdéntify some
specific gastrointestinal (Gl) images, known as Gl landmathkat indicate entrance to
a Gl section [1, 2].

With improved optical sensors the size of each image cagtiseexpected to
increase. In addition, to obtain better generalizationfquerance and avoid curse of
dimensionality, we expect to train classification algarith using videos of multiple
human subjects. The implementation of classification @lgms that require all training
data to be present in memory make the learning task extrentalilenging. Existing
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classification algorithms are facing difficulties in hamndlilarge number of training
samples.

Incremental learning has great potential to handle thesaleciyes. At each
incremental step, only the samples that are useful to butidré classifiers along with
model information is retained. When new data becomes avjlélhey are integrated
with the retained samples, and the model is updated anddorett to build a new
classifier. Support Vector Machines (SVM) [3] is a superdidearning algorithm
that can be applied to classification or regression. The S\V@6rdhm is based on
the statistical learning theory. This article focuses oterding SVM to multi-class
classification with large training data set. In general ituidized to solve binary
classification problems and is more robust, less computatipexpensive in comparison
with linear classifiers. Multi-class SVM (MSVM) is used toasbkify samples belonging
to more than two classes in a data set. A single MSVM can beideres as a group
of binary SVMs, which are assumed to yield an output thatgassimore weight to
samples which belong to positive class and less weight tpkesrirom negative class.
The binary classifiers can be built as One-against-all (Of3})and One-versus-one
(OvO) [4].

The rest of this paper is organized as follows. Section 2gmtssour methods and
discusses two algorithms for identifying extreme pointsnfra convex hull and our
learning algorithms for learning large data set using the sk reduced convex hulls.
Section 3 presents our experimental results using syntdetia, real world benchmark
data sets, and our capsule endoscopy videos. Section 4udescthis paper with
summary and our future extension.

2 Methodology

Geometric SVM represents two classes as convex hulls anegtssahe problem by
finding the minimum distance between the two [5]. Given aXet {x1,z2,...,2,},
the functiong maps each instance into the feature space,d(e:;). For simplicity, we
useg; to denotep(z;) and the mapped points form a feature et {1, ¢o, ..., dn}.
The convex hull,C(®), is hence a linear combination of all the instance®in

k k
C(@)Z{Zaﬂﬂ ¢ €P, 0<a; <1, Zaizl} 1)

i=1 i=1

To address linearly non-separable classes, soft convéx [Blil(or Reduced Convex
Hull (RCH) [7, 8]) was proposed. The RCHR(®, 1), is the set of convex combinations
of instances in® with «; bounded by au, u < 1. Following convex hull formula, an
RCH is expressed as follows:

k k
R(@,u):{zai@mie@ 0<a; <p, Zai:1}. (2)

i=1 i=1

By selecting appropriate: for each class, a linearly non-separable problem can be
transformed to a linearly-separable case [8]. The decistamdary is then perpendicular
to the nearest points between the two RCHs derived fromitigisamples. An example
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is shown in Figure 1. Figure 1(a) and (b) illustrate conveXshaf two linearly non-
separable classes and the separating hyper plane. Figireelicts RCHs that retract
for form the linearly separable case.
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Figure 1 (a) Two linearly non-separable classes consisting of 700 data pointB®eftision
boundary is found by finding the nearest points betweenRfe = 0.5) of both
classes. (c) The classes are linearly separable usipg= 0.5). (d) The
S(®;,0.5,1) is retained for future iterations.

To overcome high computational demands from large dataveepropose to identify
and employ a subset of samples in the training process. Otlrochextends the RCHs
and defines the approximate skin segments of convex hulks.ifffaition is that only
the samples within the skin are retained in training. Wheniteaél samples become
available, they will be used together with the skin of theveonhull constructed from
previous data set. Therefore, a much less number of ingaiscased in the training
process. On the other hand, we need to avoid possible eawlo$ifuture support vectors
(SVs). Although no theoretical proof is given in this papeith convex hulls constructed
in the feature space, the skin is essentially a supersetegpalsible SVs.
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Given an upper boungd, and a lower bound; for «;, 0 < p; < p,, < 1, the skin,
S(P, pu, 1), Of convex hullC(®) is the set of instances between two RCHs and can
be expressed as follows:

S((buulaliu) = {¢z|¢z € {R((p’ﬂu) - R((p’ﬂl)}' (3)

Finding the skin of convex hull, however, is challenging diee the lack of
knowledge of the data distribution. We propose a recursigthod that finds the vertices
(i.e., extreme points) of a convex hull, which are used taesgnts the skin.

The projection of a vector; to a directiond = ¢, — ¢, is defined as the inner
product of the two difference vectors with respecigtp (the reference vector):

P(d)k?ad) = <¢/€ - (baad)' (4)

The explicit expression of feature vectaps is not required to compute the extreme
points. The projectiorP (¢, d(¢.,)) in the feature space can be achieved with the kernel
operation.

» Data Points e @ Seed Points
B Extreme Points Found ¢ Random Point
@ Exteme Projections B Extreme Points Found
() (b)

Figure 2 Finding extreme points using center of gravity.

Intuitively, evaluating the projection magnitude of alltaapoints in all possible
directions finds the complete set of extreme points. It isatationally infeasible given
a large data set. An alternative approach is to evaluatedteembint projection in finite
number of directions. Our method finds the extreme pointsvigteps: 1) a set of seed
points are identified based on the center of gravity; and )cttmplete set of extreme
points are then found via recursively searching along tihection defined by a pair of
extreme points.

A set of seed extreme points are found using the gravity celdsng gravity center
could miss some less prominent extreme points following abeve procedure. An
example is illustrated in Figure 2(a). The solid squaresoteenthe data samples and
the gravity center is marked with a large circle. The pra@dctectors are marked with
solid dots. Using our method, four extreme points are idieatiand highlighted with
solid squares. For instance, point 16 is identified as aremdrpoint since it gives the
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Algorithm 1 A recursive method for finding extreme points. Probibgg, ¢,, ¢,)
Input: & C @, d, ¢,,, and ¢,

=

2: Output: set of extreme point$’

3:

4. F

5: Randomly select,, € ® andm # p,m # q
6: if ® £ then

7:  Identify probing directiond* using Eq. (5)
8: if (d*,d) <0 then

9: d* — —d*

10:  end if

11:  d* «— %

122 F e FU{¢e|e = arg max P(¢x, d")}

13:  forall ¢, € &’ do

14: if P(¢;,d*) >0 then
15: " — " Ju;

16: end if

17:  end for

18:

19: F «— F|JProbind®”,d, ¢,, dc)
20: F «— F|JProbind®",d, ¢4, de)
21: end if

22: return F

greatest projection td(z4, X) (as well asd(z15, X)). However, instances 14, 15, 17,
and 18 are the extreme points but are missed by the process.

Provided with a set of seed extreme points, our algorithmarseeely searches along
the perpendicular directions of the convex hull boundaridsch is lists in Algorithm 1.
The recursive steps start with randomly selected two se&@reg pointse,, ¢, and
another instancep,, € ®. Search for extreme points is performed in the direction
perpendicular to the difference vector ¢f, ¢,, through¢,,. Vector ¢, — ¢,, splits the
space into two halves. The perpendicular searching direati can then be determined
as follows:

0" = G = by = Py (s 60)) 2222 ©)
ll$q — dpll

Searching in each half space is achieved recursively usimpia of identified
extreme pointsg, and¢,. Let ® denote the instances in the half space. With a random
instance¢,, in ®’, a probing directiond*. d* points toward the outside of the convex
hull; Otherwise, change its direction. Hence, an extrematps identified in®’. ¢,, is
paired with ¢, and ¢, to split the feature space for further probing. The procéspss
when no additional points exist if’.

Figure 2(b) illustrates an example of probing in a half spaCiee two extreme
points are 9 and 14, which determines the probing direcfitve. dotted lines depict the
projections of the instances. In two iterations, extremiafgol and 12 are found.

The learning task is defined ag:RY — {—1,+1}, using a training set
{(z1,91), (Tn,yn)}, Wherez; € RY, y; € {—1,+1}. The two classes are denoted
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with @ = {¢; : y; = 1}, ®_ = {®, : y; = —1}. The quadratic and geometric solutions
of SVM have been shown to be equivalent [9, 10, 6, 11, 5]. Innggtac SVM, the
two classes are represented by their convex hulls and finslohgtion is equivalent
to identifying the nearest points of the two convex hullseTdptimal support vector
machine is hence the hyperplane perpendicular to the ctionecf the pair of the
nearest points of the two convex hulls.

The pair of nearest points from the two classes is denoted (Wit , ¢* ) and satisfy
the following criterion:

(63.00) =ars | min (o —o-|)
where¢’ € ®,,¢* € ®_, are found using the Gilbert’s algorithm [12].

The steps at each incremental iteration to deal with liyeadn-separable case is
summarized in Algorithm 2. Note that due to unforeseen datailoution, skin of the
same thickness for the distinct classes could enclosefisigmnily different number of
samples. Although the original data set is balanced, thecta ones could tilt the ratio
and result in skewed training data set. The skewness of #ieirtg data set penalizes
the minority class implicitly [13]. To avoid the sample sireluced bias, two separate
skin parameters are determined by weighting using the dditttumber of samples from
each class seen, i.€u,, tu—- A (< p,) is selected and the skinS(®;, w, fiu:)

1 = {+, —} (illustrated with filled triangles in Figure 1) are used todfithe decision
boundary.

Algorithm 2 Learning from large data set using RCHs.
1: Selecty,
2: Construct linearly separablB(®. , 11,,) and R(®_, u,,) using Algorithm 1
3: Select api4+, i+ < pgs, for the positive class. Without loss of generality, we
assume the positive class has less number of training egampl
Choose thgy,_ for the other class such that. | ~ [S_|
Construct inner RCHR (P, py4) and R(P_, i)
Retain samples ith(®;, 4, it ) @and S(P;, py—, foy—)
Derive the classifier using Gilbert’s algorithm [12]

No a4

3 Experiments

3.1 Data Preparation and Implementation

To analyze our method, we prepared a 2-D synthetic data setasdhe final classifier
boundary can be visualized. Examples of three classes anpled from Gaussian
functions with different means and variances.

Six sets of real world data are used, within which five setsadoined from the
UCI Machine Learning Repository [14] and a mammography data[15] is included.
Table 1 lists the properties of these real world data sets.

In our experiments, we use hierarchical SVM to achieve ruldtss classification.
In the first level one-against-all for all classes is perfedrto find the class which
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Table 1 Properties of our experimental datasets.

Positive Sample Size
Datasets Dim Class | + Class - Class
Iris Setosa 50 100
SPECT 22 1 212 55
Pima 1 268 500
Yeast CYT 463 1,021
lonosphere 34 b 126 225
Mammaography 2 260 10,923

discriminates from the rest. The first level classifier is duge classify the class
identified. In the next level the one-against-all for renvagnclasses is repeated to find
the class which discriminates the rest of the remainingselssThis is repeated until all

classes can be classified.

The performance of our methods was evaluated using setysifly specificity P and
accuracyA. Let TP, TN, FP, FN denote true positive, true negative efglssitive, and
false negative counts, respectively, in the testing resiithe three metrics are computed

as follows:
TP
S=————
TP+ FN
TN
" TN+ FP
A TP+TN
 TP+TN+FP+FN
3.2

Class 3 Vs Rest

> Class 1
= Class 2
* Class 3

(@)

-0.4

-0.5

(6)

Experiments with Synthetic and Real World Data Sets

Class 1 Vs. Class 2

» Class 1
= Class 2

(b)

Figure 3 Results of hierarchical multi class classification. Contours of decisiomdgries of
(a) Class 3 vs. Class 1 and 2 and (b) Class 1 vs. class 2.

Figure 3 illustrates the contour plots of decision bound@amned with synthetic
data sets of three classes. The color depicts the distantieetaenter of each class.
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Two classifiers were trained to partition the space intoetparts that correspond to the
class distribution. The decision boundary for this exanipléenoted with the zero level
contour. Figure 3(a) illustrates the decision boundarylass 3 verses classes 1 and 2,
whereas Figure 3(b) illustrates the decision boundaryassgs 1 and 2. The 2D contour
plots of the classifier demonstrate that our method predieiss labels successfully in
the case of multi-class classification.

Experiments on UCI data sets were performed to evaluate ¢hergl applicabilit
of our learning method in a binary classification settingcleéeature in a dataset was
normalized with the mean value and the range of that feafithat is, each component
of an instance is in the range f, 1].

Figure 4 illustrates the classifier performance during #degring iterations. Ten (10)
repetitions were conducted with random initial trainind. geor each dataset, 50% of
the data were randomly selected and used for training. Timairéng data were used
as the test set. In each case, a SVM classifier was createg al$ithe training data.
The best parameters were selected based on their gengoaliparformance with the
testing data set. The results from these classifiers areassegference and are depicted
as horizontal lines in Figure 4.

In our learning process, 10 samples were randomly selected tach class of
the training set and a SVM is trained. In each incrementad,st® randomly selected
samples from the remaining training dataset were used tatapthe classifier. The
intermediate classifiers were evaluated with the test datdSor each dataset, 10
repetitions were conducted and the average performandettegas a line in Figure 4,
the vertical line segments depicts the variance of perfooaan each incremental step.

With more examples included in the training process, thesifi@r trained with
our method improves its performance. It is evident in theesasf Yeast, SPECT,
Pima, and lonosphere. In the cases of Iris and Mammograpkypérformance at the
very beginning is already superior and there is not much efcepfor improvement.
Hence, the change of performance in the following iteraicnvery trivial. However,
improvement in sensitivity can still be observed in theriag using Mammography
dataset and by the end of iterations, classifier outperfdrtie batch learning by a small
margin.

Despite a slightly drop of specificity of the SPECT datadeg, $VMs trained with
our method achieved the same performance as or even outpeddhe batch learning
method. It is interesting that in five cases (except Irisg ifitermediate classifier had
a degradation in early iterations, but the training proomas able to recover to the
benchmark performance asymptotically as additional dasdances are included for
training.

3.3 Experiments with Capsule Endoscopy Videos

The analysis tool provided by the manufacture of the Pillaaapsule endoscopy plots
the trace of device throughout the digestive tract basechennireless signal strength
to the external image downloader carried by the patientpBedts large error margin,
it requires manually annotation by medical specialist tteanke of pylorus, where the
capsule leaves the stomach and enters the intestine, arfdathe of ileocecal valve,
between the intestine and colon. Our experiments on CE sideere performed to
automate the classification of the frames in CE videos intw fatural digestive organs,
namely esophagus, stomach, small intestine, and colon.
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Figure 4 Results of learning error using real world data sets from the UCI repgsitbe
vertical bars depict the variance around the mean value.

We have collected 6 CE videos that are manually annotated dastoenterologist.
Each video consists of approximately 55,000 frames thateateacted and saved as
JPEG images. Out of the 6 videos, we randomly selected om® \‘@train, leaving the
remaining 5 for testing and evaluation.

In our previous experiments with CE videos, we found that H&or space
gives better classification performance on average [l6]addition, using histogram
significantly reduces the dimensionality (Each frame is &<2%256 color image. If
pixel color is used, the dimensionality of each instancepstas 196,608.) Hence, we
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adopted the color histogram in the HSV space as features.colw histogram is
very large and sparse matrix as shown in Figure 5. Withins used in each color
component, there are? features using HSV histogram for every video frame, most of
which are zeros or close to zeros. To suppress sparsenestheamilimber of values
in features, only the hue and saturation (HS) componentg weed. As observed in
our previous experiments [16, 17], an advantage of using ét8ponents is improved
robustness in handling lighting variations in the Gl tra&s. shown in Figure 5, the 2D
space spanned by HS components is dominated with smallsvatience, a minimum
bounding rectangle region of the HS space with non zero salas identified from the
training images. Only the values within the rectangulariaegf HS histogram were
used as features for our classification.

Average HS Histogram

Saturation

20 40 60
Hue

Figure 5 The average HS histogram of the CE video used in training. The rectasgleteas
the color space used in our learning and classification processes.

The order of classification of multi-class SVM was deterrdineased on the
preliminary classification evaluation. In our experimentientification of esophagus
gives the best accuracy followed by the identification of Ismgestine. Hence, the order
is determined and listed in Table 2. The kernels used to B&iNl are also included in

this table.

Table 2 Order and parameters of hierarchical classification of organs of i@&os

Order Dividing classes Kernel

1 Esophagus vs. Rest RBF= 0.15)
2 Small intestine vs. Stomach and Colon RBF= 0.1)

3 Stomach vs. Colon RBF = 0.5)

In the learning process, 50 frames were randomly selecteoh feach class of
the training video to train a SVM. In each incremental stegmdomly selected 20
frames from the remaining training video frames were usedigdate the classifier.
The iteration repeats until the training examples exhaladtle 3 lists the results of the
final classifiers tested using the test videos. The perfoceard our method is highly
satisfactory. With the majority of frames acquired in stoimand small intestine, the
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average accuracies are 86.9% and 94.4%, respectively.ebnacquired in colon are
disturbed with noise from feces and fluid, which results igéanumber of dark images
and causes performance drop in the classification accuracy.

Table 3 Classification performance of digestive organs in CE videos

Video | Esophagus Stomach Small Intestine  Colon

1 100.0% 87.6% 94.2% 85.3%
2 94.4% 85.8% 95.3% 82.2%
3 95.0% 87.2% 94.7% 84.3%
4 100.0% 86.4% 94.1% 83.7%
5 90.0% 87.7% 93.9% 94.3%

At the end of incremental training only 12% of the frames wpegt of the skins
among the four classes for the hierarchical SVMs. Appayettte smaller number of
examples demands much less memory space for learning praces hence, provides
a plausible mechanism for handling large amount of data\Wéen new samples are
added, the classifier is updated efficiently in contrast éodbnventional batch learning
methods.

4 Conclusion

In this paper we presented an incremental SVM to learn frorgeladata set with
emerging trend and dynamic patterns. To overcome high ctatipnal demands from
large data set, we develop a method to identify and employbaeiiof samples in the
training process. Our method extends the reduced convéxcbutept and defines the
approximate skin segments of convex hulls. The intuitioth&t only the samples within
the skin are retained in training. When additional sampleive available, they will
be used together with the skin of the convex hull construdtech previous data set.
Therefore, a much less number of instances is used in th@ngaprocess.

Experiments were conducted using a synthetic 2D data seteal world data sets
from UCI repository, and six CE videos. Our results dematstt highly competitive
performance that requires much less resource. Based onxperimental results, the
following conclusions can be drawn.

e With more examples included in the training process, thesifier trained with
our method improves its performance.

e The training process was able to recover from an intermedpdrformance
degradation when additional instances are included famitrg.

e The average performance of classifying CE video is abov8%6which is very
competitive.

e The amount of memory space required in the training proceskl e one eighth
of what is required by the conventional SVM, which cast neyhtion processing
large data set within constrained resource.
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The accuracy for our CE video segmentation could be furtimaraoved if temporal
information is utilized. This method can be easily extenfi@dother temporal signal
classification with large data size and non-stationaryepadtt
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